AMPERE's LAW :

The line integral of magnetic field of induction \vec{B} around any closed path in free space is equal to absolute permeability of free space (μ_{0}) times the total current flowing through area bounded by the path.

$$
\oint \vec{B} \cdot \overrightarrow{d l}=\mu_{o} I
$$

In Ampere's law, we imagine an Amperian loop i.e. a closed curve around a current carrying conductor. Further we imagine the loop (selected according to our convenience) to be made up of large number of small elements each of length dl . Then we determine the scalar products of \vec{B} and $\overrightarrow{d l}$ for each element and add all such products for entire loop. The direction along which loop is traced is the direction of element of length $\overrightarrow{d l}$ $\oint \vec{B} \cdot \overrightarrow{d l}=\oint B \cdot d l \cos \theta$, where θ is the angle between \vec{B} and $\overrightarrow{d l}$

MAGNETIC FIELD DUE TO A LONG STRAIGHT CONDUCTOR CARRYING CURRENT:

Consider as infinitely long straight conductor XY carrying an electric current I. Let P be a point at a distance r from the conductor. We have to determine the magnetic induction of magnetic field at P due to current flowing through the conductor.
Let us choose an Amperian loop as an imaginary
circle of radius r (perpendicular to straight
 conductor).
\vec{B} : magnetic induction at P , due to current I flowing through the conductor.
$\overrightarrow{d l}$: length of small element of circle around the wire
According to Ampere's law,
$\oint \vec{B} \cdot \overrightarrow{d l}=\mu_{o} I$, but $\oint \vec{B} \cdot \overrightarrow{d l}=\oint B \cdot d l \cos \theta$, where θ is the angle between
\vec{B} and $\overrightarrow{d l}$ which is zero. Thus,

$$
\begin{array}{r}
\oint B . d l=\mu_{o} I \quad \text { Therefore }, B \oint d l=\mu_{o} I \\
B(2 \pi r)=\mu_{o} I \\
B=\frac{\mu_{o} I}{2 \pi r}=\frac{\mu_{o}}{4 \pi} \frac{2 I}{r}
\end{array}
$$

Magnetic Induction along the axis of a long straight solenoid:

Let n : number of turns per unit length I: current sent through it, due to which magnetic field is created.
Consider a rectangular path $A B C D$. Let $A B=L$. Hence, $n L$ is the number of turns enclosed by the rectangle ABCD.
Total current flowing $=\mathrm{nLI}$

\vec{B} : Magnetic induction at a point well inside the solenoid.
According to Ampere's law,$\oint \vec{B} \cdot \overrightarrow{d l}=\mu_{o}(n L I)$. But for $A B C D A$,
$\oint \vec{B} \cdot \overrightarrow{d l}=\oint_{A}^{B} \vec{B} \cdot \overrightarrow{d l}+\oint_{B}^{C} \vec{B} \cdot \overrightarrow{d l}+\oint_{C}^{D} \vec{B} \cdot \overrightarrow{d l}+\oint_{D}^{A} \vec{B} \cdot \overrightarrow{d l}$
$\oint_{B}^{C} \vec{B} \cdot \overrightarrow{d l}=\oint_{D}^{A} \vec{B} \cdot \overrightarrow{d l}=0$, since \vec{B} is perpendicular to $B C$ and $A D$
$\oint_{C}^{D} \vec{B} \cdot \overrightarrow{d l}=0$,
Since outside the solenoid the magnetic field lines are widely spaced
hence there is a very weak field (practically zero)
Thus, $\oint \vec{B} \cdot \overrightarrow{d l}=\oint_{A}^{B} \vec{B} \cdot \overrightarrow{d l}=\oint_{A}^{B} B d l \cos \theta=\oint_{A}^{B} B d l \cos 0=\oint_{A}^{B} B d l$
$B \oint_{A}^{B} d l=B . L$
Thus, $\oint \vec{B} \cdot \overrightarrow{d l}=\mu_{o}(n L I)$ becomes B.L= $\mu_{o}(n L I)$. Therefore, $B=\mu_{o}(n I)$
Near the ends, $B=\mu_{o}(n I) / 2$
MAGNETIC INDUCTION ALONG THE AXIS OF TOROID:

Toroid is a solenoid bent into a shape of a hollow donut.

Consider a Amperian loop of radius r. According to Ampere's law, $\oint \vec{B} \cdot \overrightarrow{d l}=\mu_{o} I$, but here the total current flowing is NI where N is the total number of turns. Thus, $\oint \vec{B} \cdot \overrightarrow{d l}=\mu_{o} N I$. Now, \vec{B} and $\overrightarrow{d l}$ are in same direction. Thus $\oint \vec{B} \cdot \overrightarrow{d l}=B \cdot d l=B(2 \pi r)$ Hence, $\mathrm{B}(2 \pi \mathrm{r})=\mu_{o} N I \quad$ Thus, $\mathrm{B}=\frac{\mu_{o} N I}{2 \pi r}=\mu_{o} n I$
where $\mathrm{n}=$ number of turns per unit length of toroid. $=\frac{N}{2 \pi r}$

